Stereo Matching Using Iterated Graph Cuts and Mean Shift Filtering
نویسندگان
چکیده
In this paper, we propose a new stereo matching algorithm using an iterated graph cuts and mean shift filtering technique. Our algorithm consists of following two steps. In the first step, given an estimated sparse RDM (Reliable Disparity Map), we obtain an updated dense disparity map through a new constrained energy minimization framework that can cope with occlusion. The graph cuts technique is employed for the solution of the proposed stereo model. In the second step, we reestimate the RDM from the disparity map obtained in the first step. In order to obtain accurate reliable disparities, the crosschecking technique followed by the mean shift filtering in the color-disparity space is introduced. The proposed algorithm expands the RDM repeatedly through the above two steps until it converges. Experimental results on the standard data set demonstrate that the proposed algorithm achieves comparable performance to the state-of-the-arts, and gives good results especially in the areas such as the disparity discontinuous boundaries and occluded regions, where the conventional methods usually suffer.
منابع مشابه
Stereo matching using iterative reliable disparity map expansion in the color-spatial-disparity space
In this paper, we propose a new stereo matching algorithm using an iterated graph cuts and mean shift filtering technique. Our algorithm estimates the disparity map progressively through the following two steps. In the first step, with a previously estimated RDM (reliable disparity map) that consists of sparse ground control points, an updated dense disparity map is constructed through a RDM co...
متن کاملVideo Segmentation Using Iterated Graph Cuts Based on Spatio-temporal Volumes
We present a novel approach to segmenting video using iterated graph cuts based on spatio-temporal volumes. We use the mean shift clustering algorithm to build the spatio-temporal volumes with different bandwidths from the input video. We compute the prior probability obtained by the likelihood from a color histogram and a distance transform using the segmentation results from graph cuts in the...
متن کاملIterated Graph Cuts for Image Segmentation
Graph cuts based interactive segmentation has become very popular over the last decade. In standard graph cuts, the extraction of foreground object in a complex background often leads to many segmentation errors and the parameter λ in the energy function is hard to select. In this paper, we propose an iterated graph cuts algorithm, which starts from the sub-graph that comprises the user labeled...
متن کاملContinuous 3D Label Stereo Matching using Local Expansion Moves
We present an accurate and efficient stereo matching method using local expansion moves, a new move making scheme using graph cuts. The local expansion moves are presented as many α-expansions defined for small grid regions. The local expansion moves extend the traditional expansion moves by two ways: localization and spatial propagation. By localization, we use different candidate α-labels acc...
متن کاملFeature-Based Stereo Matching Using Graph Cuts
In this paper, we present a novel feature point based stereo matching algorithm with global energy minimization. The initial disparity map is estimated by considering matching SURF key points between two images inside each homogeneous colour region by an adaptive box matching approach. Next, we improve the initial disparity map with a RANSAC based plane fitting technique which relies on accurac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006